

JBA-003-1203004

Seat No. _____

M. Sc. (Physics) (Sem. III) (CBCS) Examination December - 2019

ET - 2: Physics of Ionosphere and Magnetosphere

Faculty Code: 003

Subject Code: 1203004

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instruction: All questions are compulsory. The figure on right side indicates marks.

- 1 Answer Any Seven of the following. Each of two marks: 14
 - (1) Explain the EIA (Equatorial lonospheric Anomaly)
 - (2) How the scintillation of radio wave is produced.
 - (3) Define the "cowling conductivity"
 - (4) Explain why the "dynamo region" exists.
 - (5) Write the differences between airglow and aurora.
 - (6) What do you mean by TEC? What is TEC unit?
 - (7) Draw the energy level diagram of Atomic Oxygen
 - (8) Explain the "Fountain effect".
 - (9) Name the types of conductivities in ionosphere.
 - (10) Why there exists auroral oval?
- 2 Answer Any Two of the following:
 - (a) What is the motion of charged particles under the electric field and Collision? Derive the equation of motion under these forces.
 - (b) Why the ionosphere is conducting? Explain the various conductivities.
 - (c) What do you mean by Spread F? How many types of Spread F you know? Show these events on a typical ionogram.

7

3	Answer the following:		
	(a)	Describe the Sq current system. Show how the	7
	` '	magnetic field varies at different latitudes and how it	
		is used to identify the Sq focus.	
	(b)	Explain the scintillation of radio waves. Discuss the	7
		method of spaced receiver technique and its application	
		as drift measurements.	
		\mathbf{OR}	
3	Answer the following:		
	(a)	Explain the various types of "Airglow". Discuss the	7
		importance of RED and GREEN wavelength emitted	
		by atomic oxygen. Which parameters of the ionosphere	
		can be derived using these measurements?	
	(b)	Discuss the principle of airglow intensity	7
		measurement system with the help of block diagram	
		and describe the function of each block.	
4	Ans	swer Any Two of the following:	
	(a)	How the Earth is protected from the hazardous	7
		radiation from the Sun? Use the geomagnetic cavity	
		and its different regions if required.	
	(b)	Discuss why the friction model failed. What is the	7
		present and well accepted model to explain the	
		momentum transfer through magnetic linkage?	
	(c)	Describe the magnetic storm time behavior of the	7
		field such as SC, Main phase and recovery phase.	
5	Wri	te short notes on Any Two of the following:	1 4

(ii) Aurora - a spectacular event

(iii) The Cowling conductivity

(i) Equatorial electrojet

(iv) Lorentz force and gyration of charged particles.